Процессоры амд phenom ii x4. Дважды два: процессоры AMD Phenom II X2 и Athlon II X2. Общие сведения о линейке микросхем

После прорыва начала «нулевых» AMD благополучно вернулась в своё обычное состояние вечно догоняющего и, несмотря на довольно интересные и, бесспорно, передовые технические решения, даже не пытается конкурировать с Intel по объёмам продаж.

По данным на середину 2009 года, на долю компании приходится порядка 14,5% рынка микропроцессоров.
При этом некогда фирменные «фишки» чипов AMD - например, 64-разрядные расширения инструкций или встроенный в процессор контроллер оперативной памяти - давно используются в чипах главного конкурента.

Продукция AMD сегодня занимает две весьма узкие ниши: ультрабюджетных процессоров для постройки компьютеров эконом-класса и производительных моделей, предлагаемых в три-пять раз дешевле сравнимых по возможностям чипов Intel.

Именно этим объясняется тот факт, что на прилавках магазинов можно обнаружить процессоры AMD самых разных семейств и поколений - от доисторических Sempron и Athlon на базе заслуженной архитектуры K8 для разъёма Socket 939 до ультрасовременных шестиядерных Phenom II X6.

Как бы то ни было, в AMD сейчас делают ставку на архитектуру K10, поэтому речь пойдёт именно о процессорах, сконструированных на её основе.
К ним относятся Phenom и Phenom II, а также их бюджетный вариант, застенчиво названый Athlon II.

Исторически первыми чипами на базе K10 были четырёхъядерные Phenom X4 (кодовое название Agena), выпущенные в ноябре 2007 года.
Чуть позже, в апреле 2008 года появились трёхъядерные Phenom X3 - первые в мире центральные процессоры для настольных компьютеров, в которых на одном кристалле расположено три ядра.

В декабре 2008 года с переходом на 45-нанометровый техпроцесс было представлено обновлённое семейство Phenom II, а в феврале чипы получили новый разъём Socket AM3.
Серийный выпуск четырёхъядерных Phenom II X4 начался в январе 2009 года, трёхъядерных Phenom II X3 - в феврале 2009 года, двухъядерных Phenom II X2 - в июне 2009 года, а шестиядерных Phenom II X2 - буквально только что, в апреле 2010 года.

Athlon II - современная замена Sempron - представляет собой Phenom II, лишённый одного из важнейших его достоинств - большой кэш-памяти третьего уровня (L3), общей для всех ядер.
Выпускается в двух-, трёх- и четырёхъядерных вариантах.
Athlon II X2 производится с июня 2009 года, X4 - c сентября 2009 года, а X3 - с ноября 2009 года.

Архитектура AMD K10

Каковы принципиальные отличия архитектуры K10 от K8 ?
Прежде всего, в процессорах K10 все ядра выполнены на одном кристалле и снабжены выделенной кэш-памятью L2.
В чипах Phenom/Phenom 2 и серверных Opteron также предусмотрена общая для всех ядер кэш-память L3, объём которой составляет от 2 до 6 Мб.

Второе важное преимущество K10 - новая системная шина HyperTransport 3.0 с пиковой пропускной способностью до 41,6 ГБайт/с в обоих направлениях в 32-битном режиме или до 10,4 ГБайт/с в одном направлении в 16-битном режиме и частотой до 2,6 ГГц.
Напомним, что максимальная рабочая частота предыдущей версии HyperTransport 2.0 составляет 1,4 ГГц, а пиковая пропускная способность - до 22,4 или 5,6 ГБайт/с.

Широкая шина особенно важна для многоядерных процессоров, при этом в HyperTransport 3.0 предусмотрена возможность конфигурации канала, что позволяет предоставить каждому ядру собственную независимую линию.
Кроме того, процессор K10 способен динамически изменять ширину и рабочую частоту шины пропорционально собственной частоте.

При этом нужно отметить, что в настоящее время в чипах AMD шина HyperTransport 3.0 работает с намного меньшей скоростью, чем максимально допустимая.
В зависимости от модели применяются три режима: 1,6 ГГц и 6,4 ГБайт/с, 1,8 ГГц и 7,2 ГБайт/с и 2 ГГц и 8,0 ГБайт/с.
В выпускаемых чипах пока не используются ещё два заложенных в стандарт режима - 2,4 ГГц и 9,6 ГБайт/с и 2,6 ГГц и 10,4 ГБайт/с.

В процессоры K10 встраиваются два независимых контроллера оперативной памяти, что ускоряет доступ к модулям в реальных условиях эксплуатации.
Контроллеры способны работать с памятью DDR2-1066 (модели для разъёма AM2+ и AM3) или DDR3 (чипы для разъёма AM3).

Поскольку интегрированный в Phenom II и Athlon II для Socket AM3 контроллер поддерживает оба типа оперативной памяти, а разъём AM3 обратно совместим с AM2+, новые ЦП могут устанавливаться на старые платы для AM2+ и работать с памятью DDR2.

Это означает, что при покупке Phenom II для апгрейда вам не придётся сразу же менять и системную плату, а также приобретать оперативную память другого типа - как, например, в случае с чипами Intel i3/i5/i7.

В микропроцессорах с архитектурой K10 реализован целый набор модернизированных технологий энергосбережения - AMD Cool’n’Quiet, CoolCore, Independent Dynamic Core и Dual Dynamic Power Management.

Эта сложная система позволяет автоматически снижать энергопотребление всего чипа в режиме простоя, обеспечивает независимое управление питанием контроллера памяти и ядер и способна отключать неиспользуемые элементы процессора.

Наконец, сами ядра также были существенно усовершенствованы.
Была переработана конструкция блоков выборки, предсказания переходов и ветвлений, диспетчеризации, что позволило оптимизировать загрузку ядра и, в конечном итоге, повысить производительность.

Разрядность блоков SSE была увеличена с 64 до 128 бит, появилась возможность выполнять 64-разрядные инструкции как одну, была добавлена поддержка двух дополнительных инструкций SSE4a (не путать с наборами инструкций SSE4.1 и 4.2 в процессорах Intel Core).

Здесь необходимо упомянуть о конструктивном дефекте, выявленном в серверных Opteron (кодовое название Barcelona) и в Phenom X4 и X3 первых выпусков - так называемой «ошибке TLB», которая в своё время привела к полному прекращению поставок всех Opteron ревизии B2.
В очень редких случаях при высокой загрузке из-за конструктивного недостатка блока TLD кэш-памяти L3 система могла вести себя нестабильно и непредсказуемо.

Дефект был признан критически важным для серверных систем, из-за чего и была приостановлена отгрузка всех выпущенных Opteron.
Для десктопных Phenom был выпущен специальный патч, отключающий средствами BIOS дефектный блок, но при этом производительность процессора заметно падала.
С переходом на ревизию B3 проблема была полностью устранена, и в продаже такие чипы уже давно не встречаются.

Компания AMD выбрала иную стратегию, в отличие от своего главного конкурента Intel. Производитель выпускал продукцию сериями и линейками. Так, в 2008 году на рынке появилось целое семейство процессоров с разным количеством ядер, но под одним именем - AMD Phenom II. Все кристаллы основывались на одной микроархитектуре К10.

Разнообразие

Семейство собрало много разных моделей процессоров, которые распределились на три категории в зависимости от количества ядер: два, четыре и шесть. Каждый из них также попал в определенную линейку. К примеру, шестиядерные кристаллы вышли под кодовым именем Thuban. Этот же вариант был выпущен с двумя отключенными ядрами, что давало лишь четыре активных «сердца», но под другим именем - Zosma.

Была серия и с четырьмя ядрами без выключенных запасных - Deneb. Потом у этих моделей отключили сначала одно ядро и назвали линейку Heka, а потом отключили два ядра и назвали Callisto.

Спецификации

Каждый процессор из семейства AMD Phenom II мог быть установлен в разъем формата Socket AM3 с 2 ГГц HyperTransport. Все модели поддерживали двухканальную память двух типов - DDR2 и DDR3. Потребляемая мощность у каждой модели линейки была разная. Шестиядерные модели могли поглотить до 125 Вт. Частота ядра в младших вариациях составляла от 2500 до 3000 МГц, а в старших - от 3300 до 3700 МГц (в Thuban).

Фирменные наборы

Процессор AMD Phenom II в свое время стал очень популярным. Компания решила версии на четыре и шесть ядер применить в специальный комплект для геймеров. Так стали появляться игровые платформы на базе четырехъядерного кристалла, с процессором 700-й серии и фирменным графическим ускорителем.

AMD Dragon был сформирован специально для игроков, которые хотели бы получить сразу все необходимые девайсы для геймерского ПК. Изначально на рынке были доступны вариации материнских плат с разъемом для чипа AM2+ и типом памяти DDR2. После ребрендинга стали применять сокет AM3 и память DDR3. Помимо этого, на материнке функционировала графическая карта ATI Radeon HD 4800.

AMD Leo - еще одна платформа для игроков, которая состояла из высокопроизводительных комплектующих. Вместо кристалла на четыре ядра тут был представлен шестиядерный процессор.

Мы рассмотрим три основных наиболее востребованных модели процессоров AMD Phenom II. Характеристики их разнятся, также по-разному каждый кристалл показывает свои возможности разгона. Так, среди двухъядерных выделилась модель Phenom II X2 550 Black Edition, среди четырехъядерных - Phenom II X4 955 Black Edition, и среди шестиядерных - Phenom II X6 1055T.

Младший сородич

Так как новинка получила гордое название Black Edition, то, соответственно, упаковала компания кристалл в черную строгую коробку. На ней практически нет никаких ярких графических элементов. Спереди лишь информация о семействе модели и в углу указаны основные спецификации. Сразу покупатель может для себя отметить повышенные частоты - до 3 ГГц, большой объем кэш-памяти и разъем для процессора.

Внутри ничего необычного нет. Помимо кристалла, внутри находим инструкцию и кулер для AMD Phenom II X2 550 BE. Как показывает практика, несмотря на наличие охладительной системы, пользователи предпочитают приобретать дополнительный кулер. Но для некоторых и фирменный вариант сойдет.

Внешний вид процессора ничего необычного не преподнес. Спереди служебная информация с кодами и сокращенными формулировками. Сзади можно насчитать 938 контактов, которые рассчитаны на тип разъема AM3. Кроме того, этот вариант совместим и с более старым поколением разъемов - AM2+.

Стоит сразу сказать, что этот кристалл получил кодовое имя Callisto. Внутри находятся четыре ядра, но работает из них половина, поэтому модель считается двухъядерной. Использован техпроцесс 45-нм. Потребляет процессор от 80 Вт. Тактовая частота равна 3,1 ГГц. Кэш-память имеет три уровня. Общий объем составляет 7 Мб.

Была возможность снизить показатель потребляемой мощности кристаллов и шум вычислительных систем. AMD CoolCore отвечал за регулировку работы неактивных блоков процессора, что, в свою очередь, влияло на потребление энергии и тепловыделение. Память могла достичь частоты 1333 МГц.

Те пользователи, которые смогли разблокировать два «уснувших» ядра, получили отличный процессор. Двухъядерная модель превратилась в четырехъядерную. Чип со стартовой частотой 3100 МГц имел высокий разгонный потенциал. Но даже без привлечения оверклокинга производительность уже возросла почти на 50 %.

В итоге у этой модели AMD Phenom II разгон показал отличный результат - частота повысилась до 3838 МГц. В свое время чип стоил 110 долларов. За эти деньги пользователь мог сотворить из двухъядерного кристалла четырехъядерный с частотой 3,8 ГГц.

Отзывы

Спустя 3-4 года пользователи продолжали оставлять хорошие отзывы об этой модели. Недостатки и вправду было трудно найти. Хвалили покупатели хороший запас начальной тактовой частоты, достаточный объем кэш-памяти и универсальный разъем. Те, кто не побоялся заняться разблокировкой ядер, получили огромный прирост производительности и отличный показатель оверклокинга.

Средний собрат

Среднюю нишу заняли процессоры семейства AMD Phenom II X4. Тут мы рассмотрим еще одну удачную востребованную модель - Phenom II X4 955 Black Edition. Так как этот чип также принадлежал «черной серии», то коробка не изменилась с предыдущего раза. Внутри все те же штатный кулер, инструкция и сам чипсет.

Ядро получило кодовое название Deneb, которое указывало на четыре активных блока. В остальном модель практическим ничем не отличалась от предыдущей. Базовые частоты указывали на значение 3,2 ГГц. Объем кэш-памяти достигал 7 Мб. Техпроцесс - 45-нм. Увеличилось потребление (до 125 Вт).

Модели AMD Phenom II X4 не имели жестких ограничений в диапазоне напряжения, в отличие от двухъядерных вариантов. Таким образом, увеличение подачи тока могло помочь в успешном оверклокинге. Единственное, с чем могли возникнуть проблемы - с перегревом. В этом случае штатная система охлаждения точно не помогла бы. Хотя она и довольно неплохая, но на более мощные процессоры не рассчитана. Особенно если использовать разгон.

Поскольку данный вариант не имел заблокированных ядер, то ждать от него небывалого прироста не приходилось. Хотя, в принципе, увеличение частотного потенциала до стабильного показателя 3716 МГц все же дало свои плоды. И хотя не все считают поднятие скорости ядра на 16 % хорошим результатом, даже такой вариант мог немного увеличить производительность системы в целом.

Если установить более мощный кулер, то смело можно поднять частоты до отметки 3,8 ГГц. Но нужно помнить, что одновременно с этим также следует поднимать напряжение, что повлечет за собой увеличение энергопотребления.

ВведениеПродолжая череду анонсов процессоров, основанных на новом 45-нм ядре Deneb, компания AMD представляет сегодня несколько новых моделей, нацеленных на средний ценовой сегмент. Таким образом, рассмотренные нами ранее «первооткрыватели» семейства Phenom II, имеющие процессорные номера 940 и 920 , так и остаются старшими моделями в продукции AMD, но теперь позиции компании будут подкреплены ещё несколькими процессорами, при производстве которых используется более современный технологический процесс. Конкретнее, сегодня AMD представляет пять 45-нм процессоров: три четырёхъядерных - Phenom II X4 910, 810 и 805, а также два трёхъядерных - Phenom II X3 720 и 710. Однако основная интрига этого анонса заключается отнюдь не в появлении на рынке очередных относительно недорогих и при этом быстрых процессоров. Гораздо интереснее то, что выпускаемые сегодня на рынок модели имеют новое исполнение - Socket AM3.

Напомним, основная цель перевода процессоров AMD на платформу Socket AM3 заключается в реализации поддержки более современной и более скоростной DDR3 SDRAM. При этом такие Socket AM3 процессоры сохраняют и совместимость с существующей Socket AM2+ инфраструктурой. Получается, что новые модели Phenom II обладают универсальным контроллером памяти, который может работать с DDR2 или DDR3 SDRAM в зависимости от того, в какую материнскую плату он установлен. Впрочем, такая универсальность совершенно не вызывает удивления: все мы помним, с какой лёгкостью в свое время производители материнских плат разрабатывали продукты, поддерживающие DDR2 SDRAM, основывая их на LGA775-чипсетах X-серии, ориентированных на работу с DDR3 SDRAM. Преемственность, поставленная во главу угла при смене стандартов памяти, обуславливает совместимость между DDR2 и DDR3 на логическом уровне, что позволяет инженерам поддерживать обе технологии сразу с минимальными затратами.

При этом всем своим видом компания AMD даёт нам понять, что от нового процессорного разъёма и DDR3 памяти не следует ожидать слишком многого. Да, DDR3 SDRAM обладает более высокими частотами, но при этом она характеризуется и возросшими задержками, которые, как известно, также существенно влияют на скорость платформ с процессорами AMD. Видимо, руководствуясь именно этими соображениями, AMD пока что не стала переводить на Socket AM3 старшие модели Phenom II, которые остаются доступны исключительно в Socket AM2+ вариантах. Так что совместимостью с Socket AM3 пока что смогут похвастать лишь модели среднего уровня для которых, откровенно говоря, способность работать со скоростной и дорогой памятью не столь уж и актуальна.

Тому, что выпущенные всего месяц назад Phenom II X4 940 и 920 оказались несовместимы с новой Socket AM3 платформой, очевидно, есть и какие-то более весомые причины, помимо отсутствия ощутимого прироста быстродействия. И причины эти нетрудно увидеть, если познакомиться с характеристиками представляемых сегодня моделей более подробно. Дело в том, что, переходя на новый процессорный разъём, AMD решила сделать свои процессоры экономичнее: для всех пяти сегодняшних новинок предельный уровень тепловыделения установлен равным не 125 Вт, как для старших Phenom II, а 95 Вт. Именно такое же паспортное тепловыделение имеют и все четырёхъядерные процессоры Intel, относящиеся к семейству Core 2 Quad. Впрочем, судя по всему, паритет в предельных расчётных тепловых характеристиках платформ LGA775 и Socket AM3 продержится недолго, так как в течение ближайшей пары-тройки месяцев AMD собирается представить более скоростные и менее экономичные, чем Phenom II X4 910 и 810, процессоры.

Из всего сказанного следует вывод, что совместимость представляемых сегодня процессоров с новым разъёмом Socket AM3 и с DDR3 памятью мало что решает с точки зрения обычных потребителей. Представленные модели среднего ценового диапазона в подавляющем большинстве случаев попадут в Socket AM2+ инфраструктуру и будут использоваться с распространённой и недорогой DDR2 SDRAM. Высокопроизводительных же модификаций Phenom II, которые действительно было бы интересно использовать в Socket AM3 платформах, AMD пока не предлагает. Тем не менее, для нас это не повод закрыть глаза на новую перспективную платформу, которой мы и решили посвятить отдельный материал. В рамках этой статьи мы познакомимся с особенностями нового процессорного гнезда, а попутно и протестируем один из новых Socket AM3 процессоров - Phenom II X4 810.

Семейство Phenom II: многообразие видов

В первую очередь мы решили собрать воедино всю информацию о процессорах AMD, выпускаемых по 45-нм технологическому процессу и поставляемых на рынок под торговой маркой Phenom II. Необходимость единой справочной таблицы обуславливается тем, что эта серия, включающая на сегодняшний день семь процессоров, получилась очень противоречивой: она состоит из моделей с различным числом ядер, с разным предназначением, совместимостью с разными платформами и так далее.

Согласно более ранним планам, компания AMD собиралась представить и ещё один Socket AM3 процессор - Phenom II X4 925, однако на данный момент его выпуск не состоялся. Возможная причина этого состоит в проблемах с вписыванием его тепловыделения в рамки 95-ваттного теплового пакета. А учитывая и то, что следующая модель, Phenom II X4 910, хотя и анонсирована формально, фактически доступна только для OEM-партнёров AMD, старшим процессором в Socket AM3 исполнении, который можно будет в ближайшее время приобрести в магазинах, оказывается Phenom II X4 810. Именно это и объясняет участие данной модели в наших тестах.

Расширение модельного ряда Phenom II приводит к тому, что становится понятна и новая номенклатура процессорных рейтингов, принятая в AMD. Так, серии рейтингов характеризуют основные характеристики процессоров. А если добавить к имеющимся данным информацию о будущих моделях процессоров с 45-нм ядрами, то получится вполне стройная и логичная последовательность:

Серия 900 - четырёхъядерные процессоры с L3 кэшем объёмом 6 Мбайт;
Серия 800 - четырёхъядерные процессоры с L3 кэшем объёмом 4 Мбайта;
Серия 700 - трёхъядерные процессоры с L3 кэшем объёмом 6 Мбайт;
Серия 600 - четырёхъядерные процессоры без L3 кэша;
Серия 400 - трёхъядерные процессоры без L3 кэша;
Серия 200 - двухъядерные процессоры.

Информация про серии 200, 400 и 600 является предварительной. Выход таких процессоров, судя по имеющимся данным, намечен на второй квартал этого года.

Платформа Socket AM3

Вводя в обращение новую платформу Socket AM3, компания AMD в первую очередь ставит перед собой цель внедрить в системах, основанных на процессорах Phenom II, поддержку современной памяти DDR3 SDRAM. Такая поддержка имеется в платформах конкурента уже более полутора лет, однако ранее AMD считала переход на новый тип памяти несвоевременным из-за её высокой стоимости. К настоящему времени ситуация сильно изменилась, цены на DDR3-модули ощутимо упали, и это подтолкнуло AMD к выводу на рынок и развитию нового типа процессорного разъёма.

Впрочем, в отличие от основного соперника, AMD в последнее время крайне редко идёт на решительные изменения в конструкции платформы. Инженеры компании прикладывают все силы к тому, чтобы обеспечить возможность безболезненной миграции с одной платформы на другую. Такая тактика особенно актуальна в свете сложившихся реалий, когда процессоры AMD имеют не столь много преимуществ в сравнении с продуктами компании Intel. Именно этим и интересна новая платформа: разработчики AMD смогли предложить такую схему модернизации встроенного в собственные процессоры контроллера памяти, при которой недовольными не должны остаться ни старые, ни новые приверженцы марок Athlon и Phenom.

То, что платформа Socket AM3 во многом похожа на свою предшественницу, понять можно уже по беглому взгляду на платы и процессоры в новом исполнении. Компания AMD не только не стала переводить свои чипы в LGA-упаковку, а более того, процессоры даже сохранили те же геометрические размеры, практически не изменилось и число их контактов. Благодаря тому, что AMD поставила во главу угла идеи преемственности и совместимости, отличить Socket AM3 процессор от Socket AM2+ собрата можно только лишь при очень внимательном рассмотрении.



Слева - Socket AM2+ процессор, справа - Socket AM3 процессор


Различия между Socket AM2+ и Socket AM3 процессорами видны лишь со стороны «брюшка». По приведённой фотографии можно заметить, что число контактов у Socket AM3 уменьшилось на два, соответственно, теперь их стало 938.

Аналогичную картину можно увидеть, если сравнить разъёмы на материнских платах.



Слева - Socket AM2+, справа - Socket AM3


Как нетрудно заметить, механически процессоры в Socket AM3 исполнении можно установить в Socket AM2+, в то время как Socket AM2+ процессор в Socket AM3 материнскую плату просто не вставится из-за «лишних» двух контактов. Эта механическая совместимость отражает и совместимость логическую. Новые процессоры в Socket AM3 исполнении имеют универсальный контроллер памяти, поддерживающий как DDR2, так и DDR3 SDRAM. Конкретный же тип используемой памяти в каждом случае определяется исключительно слотами DIMM на материнской плате. В Socket AM2+ платах это DDR2, в Socket AM3 - DDR3 SDRAM. Более же старые Socket AM2+ процессоры такой универсальностью не обладают, они могут работать исключительно с DDR2 SDRAM, именно поэтому их и лишили механической совместимости с новым процессорным гнездом.



Socket AM2+ и Socket AM3 сохранили преемственность и во многих других аспектах. Благодаря соответствию размеров разъёмов и процессоров, AMD удалось гарантировать возможность использования в обеих платформах одинаковых процессорных кулеров. Не трансформировалась даже схема их крепления.

То же самое касается и особенностей микроархитектуры: процессоры, имеющие Socket AM2+ и Socket AM3 исполнение, различаются только в части контроллера памяти. Все остальные узлы, включая и шину HyperTransport 3.0, были сохранены неизменными. А это в свою очередь означает, что для поддержки Socket AM3 не требуются новые чипсеты, такие процессоры прекрасно совместимы с теми же наборами логики, что и Socket AM2+ модели. Именно поэтому основные разработчики наборов логики для платформы AMD и не предлагают никаких специальных решений, ориентированных на поддержку новинок.

Практически полная механическая и логическая совместимость между типами процессорных разъёмов в некоторых случаях даже позволяет отойти от изначальной схемы взаимно однозначного соответствия: Socket AM2+ - DDR2 SDRAM, Socket AM3 - DDR3 SDRAM. Некоторые производители материнских плат, например компания Jetway, готовят универсальные Socket AM2+ материнские платы со слотами для DDR2 и DDR3, в которые при использовании Socket AM3 процессора можно будет поставить либо одну, либо другую память.

Socket AM3 процессоры официально поддерживают DDR2-память c частотой до 1067 МГц и DDR3 с частотой до 1333 МГц. При этом надёжная работоспособность DDR3-1333 в Socket AM3 системах гарантируется лишь в случае применения не более чем одного модуля на канал. Однако на практике оказывается, что новые процессоры могут работать и с DDR3-1600 SDRAM: соответствующий множитель для частоты памяти встроенным контроллером поддерживается. На практике выглядит это так, что при установке Socket AM3 процессора в Socket AM2+ плату оказывается возможен выбор между стандартными для любых Phenom частотами памяти DDR2-667/800/1067, а при его использовании в Socket AM3 платах открывается другой набор множителей, позволяющий тактировать память в режимах DDR3-1067/1333/1600.

К сказанному остаётся только добавить, что для достижения полной совместимости имеющихся на рынке Socket AM2+ материнских плат с новыми Socket AM3 процессорами достаточно лишь простого обновления BIOS. Причём, поддержка в BIOS материнской платы процессоров Phenom II даже в Socket AM2+ исполнении автоматически влечёт за собой и то, что в такой материнской плате будут без проблем работать и Socket AM3 процессоры. А это в свою очередь означает, что никаких особенных трудностей при адаптации существующего парка материнских плат под новые процессоры не предвидится.

Процессор Phenom II X4 810

После подробного рассказа о том, что привносит Socket AM3 сам по себе, кажется, удивить нас процессору в этом конструктивном исполнении уже нечем. Однако, это не совсем так. Хотя в целом новые Phenom II мало отличаются от Phenom II, представленных AMD месяц назад, присланный нам на тестирование Phenom II X4 810 продемонстрировал некоторые неожиданные характеристики.


В первую очередь необходимо отметить, что процессорный номер из восьмого десятка Phenom II X4 810 получил явно неспроста. Такими уменьшенными номерами AMD обозначает четырёхъядерные процессоры с урезанными характеристиками. В нашем случае под нож пошла часть L3 кэш-памяти, её размер у Phenom II X4 810 составляет 4 Мбайта против 6 Мбайт у «полноценных» Phenom II.

Вообще, появление процессоров Phenom II с уменьшенной L3 кэш-памятью, как и с отключенными ядрами - вполне закономерное событие. Монолитный кристалл процессоров Deneb, хотя и производится с применением 45-нм технологического процесса, имеет достаточно большую площадь: 258 кв. мм. Для сравнения, это - лишь немногим меньше площади кристалла Intel Core i7, что говорит о примерно одинаковой себестоимости производства этих процессоров. Сравнение же розничной стоимости Core i7 и Phenom II оказывается явно не в пользу последнего: очевидно, выпуск Phenom II - гораздо менее прибыльное предприятие, чем производство Core i7. А учитывая то, что AMD пока не располагает кристаллами, сравнимыми по производительности с лучшими продуктами Intel, становится понятно, что компания вынуждена выжимать максимум прибыли из имеющихся ресурсов. Продажа процессоров, основанных на частично бракованных кристаллах, которые по каким-то причинам не смогли попасть в Phenom II 900-й серии, - это один из таких методов.

Собственно, появление Phenom II X4 810 - типичная иллюстрация данной тактики. В основе этого процессора лежит точно такой же полупроводниковый кристалл Deneb, как и в процессорах Phenom II серии 900, однако треть L3 кэш-памяти в нём отключена. Благодаря такому трюку AMD реализует кристаллы, в которых во время производства возник брак в той части, где располагается L3 кэш. Если же брак приходится на область кристалла, в которой находятся вычислительные ядра, то такие кристаллы идут в ход при производстве трёхъядерных процессоров Phenom II 700-й серии, которые также представляются публике сегодня.

Характеристики L3 кэш-памяти процессора Phenom II X4 810 выглядят при этом весьма странно.


Если верить показаниям диагностической утилиты, L3-кэш этого процессора имеет 64 области ассоциативности, в то время как L3 кэш полноценных Phenom II X4 900 с 6-мегабайтной кэш-памятью третьего уровня имел лишь 48 областей ассоциативности. Наиболее логичным объяснением данного феномена видится ошибка в показаниях CPU-Z, а L3-кэш Phenom II X4 810 имеет степень ассоциативности 32. В противном случае кэш в 800-й серии должен иметь большую латентность, чем в старших моделях процессоров, чего на практике не наблюдается.

Впрочем, L3-кэш процессоров Phenom II в Socket AM3 исполнении оказывается всё-таки быстрее, чем у их Socket AM2+ собратьев. Однако причины этого кроются отнюдь не в глубине микроархитектуры - они лежат на поверхности. Дело в том, что для своих Socket AM3 моделей AMD установила более высокую частоту интегрированного северного моста, которая используется и для тактирования кэш-памяти третьего уровня. L3-кэш в Phenom II X4 810, как и в других процессорах для новой платформы, работает на частоте 2,0 ГГц, в то время как частота L3-кэша предшественников была на 200 МГц ниже.


Как следует из приведенного скриншота, сказанное верно и при установке Socket AM3 процессора в Socket AM2+ материнскую плату.

Но несмотря на все отличия рассматриваемого нами Phenom II в Socket AM3 исполнении от своих Socket AM2+ собратьев, с которыми мы имели возможность познакомиться месяц назад, кровное родство между ними скрыть достаточно трудно. Например, Phenom II X4 810 использует тот же степпинг ядра C2, который был замечен нами в процессорах Phenom II X4 940 и 920 ранее. А это значит, что полупроводниковые кристаллы, лежащие в основе Socket AM2+ и Socket AM3 вариантов Phenom II, не отличаются вообще, а типы памяти, поддерживаемые той или иной модификацией процессора, определяются только на этапе упаковки его в корпус.

Влияние размера L3 кэш-памяти на производительность

Первый же вопрос, который возникает при знакомстве с характеристиками процессора Phenom II X4 810, касается того, насколько вредит быстродействию произошедшее сокращение размера L3-кэша. Чтобы однозначно ответить на этот вопрос, мы решили сопоставить производительность процессоров Phenom II X4 810 и Phenom II X4 910. Обе эти модели основываются на 45-нм ядре Deneb, имеют одинаковую тактовую частоту 2,6 ГГц и отличаются лишь объёмом кэш-памяти, которая в обоих случаях работает на одной и той же частоте 2,0 ГГц.



Проведённое тестирование показывает, что урезание L3 кэша c 6 до 4 Мбайт не приводит к сколь-нибудь существенному падению производительности процессоров Phenom II X4. Проигрыш Phenom II X4 810 своему «полноценному» собрату не только составил в среднем лишь 2 %, но и в самых неблагоприятных ситуациях не превысил 5-процентную границу.

Таким образом, вполне резонно, что Phenom II X4 810 стоит всего лишь на 20 долларов дешевле, чем Phenom II X4 920. Очевидно, в практической производительности этих процессоров нет никакой вопиющей разницы, а главный недостаток младшей модели заключается отнюдь не в урезанном L3 кэше, а в более низкой тактовой частоте.

Кстати, не следует забывать и о том, что кэш-память третьего уровня процессора Phenom II X4 810 работает на более высокой частоте, чем L3-кэш старших моделей Phenom II X4 940 и 920. А это может рассматриваться как дополнительная компенсация за его меньший объём, ведь как было нами выяснено ранее , 200-мегагерцовый прирост частоты встроенного в процессор северного моста влечёт за собой примерно полуторапроцентное увеличение быстродействия.

Материнская плата Gigabyte GA-MA790FXT-UD5P

Откровенно говоря, у нас сложилось впечатление о том, что сегодняшний анонс платформы Socket AM3 подготовлен недостаточно хорошо. Явные проблемы, с которыми пришлось столкнуться и нам, видны в неготовности новой инфраструктуры: подобрать платформу для тестирования новых Socket AM3 процессоров оказалось совсем непросто. Производители материнских плат явно не ожидали, что AMD будет представлять Socket AM3 уже через месяц после выпуска первых Socket AM2+ Phenom II, а потому не успели довести до финальной стадии разработку и производство соответствующих продуктов. В результате, даже представители компании AMD рекомендовали нам проводить тестирование Phenom II X4 810 на Socket AM2+ материнской плате с DDR2 памятью.

Тем не менее, нам всё же удалось достать для испытаний Socket AM3 материнскую плату. Положение спасла компания Gigabyte, буквально в последний момент предоставившая свою свежую Socket AM3 плату GA-MA790FXT-UD5P. Эта плата будет новым флагманским продуктом в ряду предложений Gigabyte для владельцев процессоров AMD, а потому она заслуживает отдельного рассмотрения.


Gigabyte GA-MA790FXT-UD5P продолжает серию продуктов компании, ориентированных на поддержку процессоров AMD, потому эта плата имеет много общих черт с предшественницами, снабжёнными процессорным разъёмом Socket AM2+. Впрочем, это совершенно неудивительно, учитывая, что в основе GA-MA790FXT-UD5P лежит привычный набор логики, состоящий из северного моста AMD 790FX и южного моста SB750. Фактически, основные особенности платы сосредоточены в окрестностях Socket AM3, так как здесь находятся четыре слота для DDR3 SDRAM - памяти, которая раньше системами с процессорами AMD не поддерживалась.



Так как рассматриваемая материнская плата предназначена для создания высокопроизводительных систем, на ней имеются два слота PCI Express x16 2.0, которые могут работать с парой графических карт, объединённых по технологии CrossFireX, в полноскоростном режиме.



Позиционирование платы определило и её принадлежность к классу Ultra Durable 3, к которому Gigabyte относит все свои наиболее интересные продукты. В первую очередь это означает, что при изготовлении платы повсеместно используются качественные электронные компоненты: конденсаторы с твёрдым электролитом японского происхождения, полевые транзисторы с пониженным сопротивлением канала в открытом состоянии и катушки индуктивности, выполненные на броневых ферритовых сердечниках. Во-вторых, материнская плата GA-MA790FXT-UD5P использует печатную плату с более толстыми, чем обычно, медными слоями «земли» и питания. Такое усовершенствование позволяет компании Gigabyte говорить о повышении качества сигналов и уменьшении наводок, а также об улучшении теплового режима работы платы - проводники заодно играют роль теплоотвода.

Преобразователь питания процессора на плате выполнен по четырёхканальной схеме, при этом его мощность такова, что Gigabyte гарантирует стабильную работу платы с процессорами, потребляющими вплоть до 140 Вт. Транзисторы, входящие в конвертер питания, закрыты массивным радиатором (самым большим на плате), соединённым тепловыми трубками с радиаторами, установленными на северном и южном мостах чипсета. Следует подчеркнуть, что радиаторы эти имеют небольшую высоту и отодвинуты от процессорного разъёма на расстояние, достаточное для комфортной установки массивных кулеров. Однако препятствия при установке процессорной системы охлаждения всё-таки могут возникнуть со стороны слотов DIMM, которые размещены настолько близко к процессорному гнезду, что из-за кулера можно лишиться возможности установки модулей DDR3 памяти в ближайшие к процессору слоты.



Для удобства использования инженеры Gigabyte разместили на плате кнопки «Power», «Reset» и «Clear CMOS». К сожалению, привносимое при этом удобство компенсируется их весьма неудачным местоположением: первые две кнопки оказались заперты между разъёмами, а кнопка «Clear CMOS» может быть перекрыта длинномерной видеокартой. Зато инженеры Gigabyte не забыли приспособление для защиты кнопки сброса настроек от случайного нажатия: она закрыта прозрачным пластиковым колпачком.

Привлекает к себе внимание наличие на GA-MA790FXT-UD5P десяти развёрнутых параллельно плате портов Serial ATA-300. При этом шесть портов реализованы стандартным образом через южный мост SB750, а за остальные четыре отвечают дополнительные контроллеры JMicron. Порты, подключенные к южному мосту, поддерживают RAID массивы уровней 0, 1, 0+1 и 5, а дополнительные порты могут обеспечить лишь RAID 0 или 1.



На заднюю панель платы вынесены восемь портов USB 2.0, два гигабитных сетевых порта, два порта Firewire, порты PS/2 для мыши и клавиатуры, а также аналоговые и SPDIF аудио-входы и выходы. Отметим, что за реализацию звука на рассматриваемой плате отвечает восьмиканальный кодек Realtek ALC889A, имеющий паспортное соотношение сигнал-шум на уровне 106 дБ. В дополнение к выведенным на заднюю панель портам, GA-MA790FXT-UD5P снабжена и несколькими игольчатыми разъёмами, которые позволяют подключить ещё четыре USB 2.0 и один IEEE1394.



BIOS Setup рассматриваемой материнской платы выполнен с явным прицелом на энтузиастов, поэтому, помимо стандартных настроек, в нём присутствует целый раздел «MB Intelligent Tweaker», предназначенный для разгона. Помимо ставших стандартными возможностей для изменения множителей и базовых частот, в нём предлагаются гибкие средства для управления напряжениями.



Предел увеличения напряжения на DDR3 памяти составляет 2,35 В, а процессорный вольтаж может быть увеличен до величины, превышающей штатное значение на 0,6 В. Дополнительно можно управлять напряжением встроенного в процессор северного моста и питанием микросхем чипсета.

Также, платой предлагаются развёрнутые настройки параметров памяти.



В целом, материнская плата Gigabyte GA-MA790FXT-UD5P произвела на нас достаточно благоприятное впечатление. Конечно, версия BIOS номер F4D, с которой мы тестировали эту плату, пока ещё не может названа беспроблемной и абсолютно стабильной, но, тем не менее, мы смогли не только выполнить полный комплект тестов в штатном режиме, но и провести эксперименты по разгону процессора.

Как мы тестировали

Сегодняшнее тестирование мы поделили на два этапа. В первую очередь мы выясним, как сказывается на скорости процессоров Phenom II X4 их перевод на новую платформу, поддерживающую DDR3 SDRAM. Для этого мы сравним быстродействие нового Phenom II X4 810 при его работе в Socket AM2+ материнской плате с DDR2-800 и DDR2-1067 памятью с его производительностью при установке в Socket AM3 плату, в которой мы будем использовать DDR3-1333 и DDR3-1600 SDRAM.

Второй этап наших тестов будет посвящён выяснению производительности новых четырёхъядерных процессоров AMD в сравнении с конкурирующими предложениями. Здесь, очевидно, основной интерес привлечёт к себе сопоставление быстродействия Phenom II X4 810 и Core 2 Quad Q8200, поскольку эти процессоры имеют примерно одинаковую розничную стоимость.

В итоге, в тестах был задействован следующий набор компонентов:

Процессоры:

AMD Phenom II X4 920 (Deneb, 2,8 ГГц, 6 Мбайт L3);
AMD Phenom II X4 910 (Deneb, 2,6 ГГц, 6 Мбайт L3);
AMD Phenom II X4 810 (Deneb, 2,6 ГГц, 4 Мбайта L3);
AMD Phenom II X4 805 (Deneb, 2,5 ГГц, 4 Мбайта L3);
AMD Phenom X4 9950 (Agena, 2,6 ГГц, 2 Мбайта L3);
Intel Core 2 Quad Q8300 (Yorkfield, 2,5 ГГц, 333 МГц FSB, 2 x 2 Мбайта L2);
Intel Core 2 Quad Q8200 (Yorkfield, 2,33 ГГц, 333 МГц FSB, 2 x 2 Мбайта L2).


Материнские платы:

ASUS P5Q Pro (LGA775, Intel P45 Express, DDR2 SDRAM);
Gigabyte MA790GP-DS4H (Socket AM2+, AMD 790GX + SB750, DDR2 SDRAM);
Gigabyte MA790FXT-UD5P (Socket AM3, AMD 790FX + SB750, DDR3 SDRAM).


Оперативная память:

GEIL GX24GB8500C5UDC (2 x 2 Гбайта, DDR2-1067 SDRAM, 5-5-5-15);
Mushkin 996601 4GB XP3-12800 (2 x 2Гбайта, DDR3-1600 SDRAM, 7-7-7-20).


Графическая карта: ATI RADEON HD 4870.
Жёсткий диск: Western Digital WD1500AHFD.
Операционная система: Microsoft Windows Vista x64 SP1.
Драйверы:

Intel Chipset Software Installation Utility 9.1.0.1007;
ATI Catalyst 9.1 Display Driver.

Производительность: DDR3 против DDR2

В этой части нашей статьи мы сравним скорость работы Phenom II X4 810 при его установке в материнские платы с разным типом процессорного разъёма: Gigabyte MA790GP-DS4H и Gigabyte MA790FXT-UD5P. В том и другом случае мы использовали по паре различных широко распространённых конфигураций памяти.

Так, в Socket AM2+ системе применялась DDR2-800 с таймингами 5-5-5-15 и 1T Command Rate и DDR2-1067 с таймингами 5-5-5-15 и 2T Command Rate. Отметим, что использование во втором случае 2T Command Rate - мера вынужденная, так как контроллер памяти Phenom II не позволяет уменьшить эту задержку при использовании двухгигабайтных модулей DDR2-1067 SDRAM.

В Socket AM3 системе были использованы конфигурации, включающие DDR3-1333 и DDR3-1600, обе с задержками 7-7-7-20. Параметр Command Rate в обоих случаях был выставлен в 1T - к счастью, с высокоскоростной DDR3 памятью такой выбор оказывается допустим.

Синтетические тесты

В первую очередь было решено оценить практические параметры подсистем памяти различных платформ, используя синтетические тесты.















Как того и следовало ожидать, синтетические тесты единодушно демонстрируют превосходство в пропускной способности и латентности платформы Socket AM3. Иными словами, от новой платформы, позволяющей использовать DDR3-1333 и DDR3-1600, можно ожидать только прироста производительности.

К сказанному необходимо добавить, что, как показала дополнительная проверка, производительность контроллера памяти Socket AM3 процессора, установленного в Socket AM2+ систему с DDR2-памятью, оказывается идентична производительности контроллера памяти «родных» Socket AM2+ процессоров (при условиии работы на одинаковой тактовой частоте встроенного северного моста). Иными словами, универсальность контроллера памяти Socket AM3 процессоров не приводит к снижению его производительности при работе с DDR2 SDRAM.

Общая производительность















Результаты, полученные в SYSMark 2007, показывающем средневзвешенную производительность в реальных приложениях, подтверждают преимущества новой платформы. Впрочем, повода для излишнего оптимизма они не дают. Как видно, переход на использование DDR3 SDRAM увеличивает скорость системы, основанной на процессоре Phenom II X4 810, весьма символически. Так, превосходство Socket AM3 системы, оснащённой DDR3-1600 SDRAM, над системой с Socket AM2+ процессором и DDR2-1067 памятью составляет всего лишь 3-4 %.

Игровая производительность















Хотя игры обычно проявляют хорошую чувствительность к изменениям характеристик подсистемы памяти, переход на DDR3 не приносит серьёзного выигрыша. Однако необходимо подчеркнуть, что это совершенно не означает приемлемость совсем уж наплевательского подхода при выборе памяти. Например, ставка на DDR3-1600 SDRAM вместо DDR2-800 может увеличить производительность платформы на величину до 10 %. Поэтому появление платформы Socket AM3 и процессоров с универсальным контроллером памяти бесполезным шагом назвать нельзя. Память типа DDR3 к настоящему моменту получила достаточное развитие для того, чтобы в её преимуществах над DDR2 не приходилось сомневаться. А это значит, что выжидала для запуска своей новой платформы компания AMD явно не напрасно.







Хотя кодирование видеоконтента - преимущественно вычислительная задача, быстрая DDR3-память даёт небольшое ускорение работы и в этом случае.







Что характерно, преимущество платформы Socket AM3 над Socket AM2+ проявляется даже в финальном рендеринге, практически полностью безразличном к выбору памяти.

Прочие приложения



При редактировании изображений в популярном графическом редакторе тип памяти оказывает хорошо различимое влияние. Даже при использовании самой обычной DDR3-1333 памяти мы смогли получить более высокую скорость, чем продемонстрировала Socket AM2+ система с DDR2-1067 SDRAM.






Немного возросла с переходом на новую платформу и скорость решения вычислительных задач в Excel и Mathematica. Превосходство Socket AM3 системы с DDR3-1600 памятью над конфигурацией, использующей Socket AM2+ и DDR2-1067 SDRAM, составило почти 3 %.



Примерно в аналогичном масштабе возрастает и скорость работы архиватора.






Подводя итог, можно говорить о том, что платформа Socket AM3 позволяет ускорить выполнение процессорами Phenom II X4 типовых задач в среднем на 2-3 %. Сегодня, на фоне разницы цен между DDR2 и DDR3 модулями, этот прирост кажется смешным. Однако в свете тенденции дальнейшего падения стоимости DDR3 SDRAM, платформа Socket AM3 имеет вполне радужные перспективы.

Производительность AMD Phenom II X4 810

Несмотря на то, что новый процессор AMD Phenom II X4 810 имеет Socket AM3 исполнение, тестирование его производительности, а также производительности других сегодняшних новинок, мы решили проводить в Socket AM2+ системе, укомплектованной DDR2 памятью. Обусловлено это тем, что в существующих реалиях данные процессоры, относящиеся к среднему ценовому диапазону, скорее всего будут использоваться именно в таких системах: это наиболее логичный вариант с точки зрения экономической целесообразности. Кроме того, DDR2-память применялась и во всех остальных протестированных нами системах, так что выбор Socket AM2+ платформы для тестов Phenom II X4 810 представляется вполне корректным.

Общая производительность















Грамотное построение ценовой политики - это то, в чём компания AMD особенно поднаторела в последнее время. Поэтому было бы странно увидеть, если бы какой-то из новых процессоров смотрелся неадекватно в ряду конкурентов той же ценовой категории. Так что небольшое превосходство Phenom II X4 810 над Core 2 Quad Q8200 удивления отнюдь не вызывает, однако более дорогой процессор Intel, Core 2 Quad Q8300, сегодняшней главной новинке оказывается уже не по зубам.

Игровая производительность















Хотя процессоры Phenom II стали демонстрировать в играх куда лучшие показатели, чем их предшественники, производимые по 65-нм технологии, говорить об уверенной победе Phenom II X4 810 над Core 2 Quad аналогичной ценовой категории пока что не приходится. Чтобы Phenom II X4 810 получил наши однозначные рекомендации в качестве игрового решения, ему явно не хватает тактовой частоты. Впрочем, ситуация для процессора AMD отнюдь не катастрофическая, и в ряде игровых приложений его производительность оказывается на вполне приемлемом уровне.

Производительность при кодировании видео






Зато при кодировании видео Phenom II X4 810 проявляет себя исключительно с положительной стороны. Например, при использовании кодека x264 он даже может соперничать на равных с более дорогим Core 2 Quad Q8300. Объясняется это, очевидно, высокой эффективностью FPU/SSE блока процессоров c микроархитектурой Stars (K10).

Производительность при рендеринге






Общий вердикт при таком типе нагрузки вынести достаточно тяжело. Как хорошо видно по графикам, всё сильно зависит от того приложения, которое используется для рендеринга. Тем не менее, совсем уж лицом в грязь Phenom II X4 810 не ударяет, демонстрируя достойные результаты даже в 3ds max 2009, где традиционно сильны процессоры Intel.

Прочие приложения






Adobe Photoshop и Microsoft Excel - два популярных приложения, в которых процессоры Phenom II очень плохо справляются со своей работой. Это касается и Phenom II X4 810, который проигрывает Core 2 Quad Q8200 во времени выполнения наших тестовых задач на 9 и 17 процентов соответственно.



В Wolfram Mathematica 7 результаты Phenom II X4 810 можно назвать приемлемыми, хотя они и оказываются несколько ниже, чем у самого младшего процессора серии Core 2 Quad.



Зато при архивации в WinRAR новому процессору AMD удаётся продемонстрировать значительно более высокое относительное быстродействие, чем в предыдущих случаях.






Счётные задачи, где активно используется целочисленная арифметика, - не самая благоприятная среда для процессоров с микроархитектурой Stars (K10). Две приведённые выше диаграммы выступают яркой иллюстрацией к этому давно известному тезису.

Разгон

С выходом семейства Phenom II тема разгона процессоров AMD вновь приобрела актуальность. Эти процессоры, в основе которых лежат 45-нм ядра, помимо всего прочего, получили и хороший разгонный потенциал: как показали наши более ранние тесты , данные модели при использовании воздушного охлаждения способны работать на частотах, достигающих 3,7-3,8 ГГц. Однако те наши выводы были сделаны для процессоров 900-й серии, использующих полноценные ядра Deneb. Теперь же в наших руках оказался процессор Phenom II X4 810, обладающий урезанным кэшем третьего уровня, а кроме того, Socket AM3 исполнением.

Для исследования разгонного потенциала нового процессора мы воспользовались новой Socket AM3 материнской платой Gigabyte MA790FXT-UD5P. Применение этой платы позволит нам, среди прочего, сделать выводы и о пригодности к разгону Socket AM3 платформ в целом. Охлаждение процессора во время тестов выполнялось кулером Scythe Mugen с установленным на него вентилятором Noctua NF-P12.

Наилучший результат нам удалось получить при повышении напряжения питания процессора со штатных 1,3 до 1,525 В. В таком состоянии процессор разогнался до 3,64 ГГц, что вполне сопоставимо с результатами разгона других Phenom II, полученными нами ранее.



Заметим, что поскольку процессор Phenom II X4 810 не относится к классу Black Edition и не обладает свободным множителем, его разгон выполнялся увеличением частоты базового тактового генератора. В частности, для получения процессорной частоты 3,64 ГГц нам пришлось увеличить частоту тактового генератора до 280 МГц, с чем используемая нами Socket AM3 материнская плата справилась без каких бы то ни было проблем. Иными словами, разгон процессоров в Socket AM3 системах абсолютно аналогичен разгону в системах с процессорным разъёмом Socket AM2+ и может выполняться в полном соответствии с нашим руководством .

Что же касается собственно Phenom II X4 810, то его полученный нами 40-процентный разгон может стать дополнительным аргументом в пользу платформы AMD. Тем более что сравнимые по стоимости процессоры Intel Core 2 Quad Q8200 зачастую оказывается возможно разогнать только до 3,4 ГГц . И в этой связи система, построенная на базе Phenom II X4 810, может обладать неплохой привлекательностью и для оверклокеров.

Выводы

Честно говоря, компания AMD выбрала несколько странный момент для вывода на рынок своей новой платформы Socket AM3, предназначенной для процессоров, обладающих поддержкой DDR3-памяти. Почему-то эта платформа появилась не месяц назад, вместе с новой линейкой процессоров Phenom II, а только сейчас. В итоге, ввиду того, что старшие модификации Phenom II уже предлагаются в Socket AM2+ вариациях, сопровождать анонс Socket AM3 вынуждены модели из среднего ценового диапазона. Однако эти процессоры представляются очень плохими кандидатами на установку в Socket AM3 материнские платы: необходимая для таких систем DDR3 память примерно в полтора-два раза дороже широко распространённой DDR2 SDRAM, что делает её приобретение сомнительной инвестицией по сравнению с возможностью выбора более дорогого процессора.

Впрочем, основное преимущество Socket AM3 процессоров и заключается в том, что они снабжены гибким контроллером памяти, который может работать как с DDR3, так и с DDR2-памятью. Поэтому, использовать представляемые сегодня Socket AM3 процессоры Phenom II средней ценовой категории в Socket AM3 системах никто не принуждает. Они превосходно работают и в существующей, проверенной временем Socket AM2+ или даже Socket AM2 инфраструктуре.

Тем не менее, благодаря тестированию нового процессора в Socket AM3 материнской плате мы смогли убедиться в жизнеспособности и этой платформы. Использование DDR3 SDRAM с процессорами Phenom II даёт вполне осязаемый эффект, заключающийся в примерно трёхпроцентном увеличении быстродействия даже по сравнению с DDR2-1067 SDRAM.

К счастью, отсутствие высокопроизводительных процессоров для платформы Socket AM3 - ситуация временная. В течение ближайших месяцев AMD, очевидно, скорректирует свои предложения, и новая платформа получит достойные скоростные процессоры. Этот промежуток времени даётся явно нуждающимся в нём производителям материнских плат с тем, чтобы они всё-таки довели до ума свои Socket AM3 продукты.

Что же касается рассмотренного в этой статье процессора Phenom II X4 810, то его следует воспринимать как очередное воплощение стратегии AMD по предложению более высокой производительности за меньшие деньги. Тестирование показало, что по уровню быстродействия он сопоставим с Core 2 Quad Q8200, но при этом стоит чуть-чуть дешевле. В результате, в арсенале AMD появилась приемлемая альтернатива всем дешёвым четырёхъядерным процессорам Intel, вплоть до Core 2 Quad Q9400. Иными словами, AMD смогла сделать важный шаг - предложить конкурентоспособную линейку процессоров, которые вполне можно рекомендовать к покупке.

К сказанному в этой статье остаётся лишь добавить, что знакомство с Phenom II мы пока ещё не заканчиваем, и в ближайшее время нас ждёт ещё один материал о новых трёхъядерных процессорах, в основе которых лежит ядро Heka, производимое по 45-нм технологическому процессу.

Уточнить наличие и стоимость процессоров AMD Phenom II

Другие материалы по данной теме


Разгон Phenom II X4 920: падение культа Core 2 Quad
Иногда они возвращаются: AMD представляет Phenom II X4
AMD выпускает «Phenom X2»: обзор AMD Athlon X2 7750 Black Edition

Закрывая круг «исторических тестирований», сегодня мы займемся платформой, которая формально остается в числе живых и здравствующих, хотя идеологически даже старше ранее рассмотренных AMD FM1 и Intel LGA1156 . Как ей это удается? Этим вопросом мы уже занимались : Socket AM3+ 2011 года практически ничем не отличается от «просто» АМ3 2009, получившейся путем перехода с DDR2 на DDR3 из AM2/AM2+ от 2006 года, а эти, в свою очередь, являются практически ни чем иным, как Socket 939 лета 2004 года, но с DDR2, а не с «простой» DDR. Правильнее, впрочем, говорить даже о 2003 годе, когда появился Socket 940: Socket 939 - это его упрощение, без поддержки многопроцессорных конфигураций. За это время успели поменяться не только стандарты памяти, конечно, но и некоторые другие интерфейсы, однако концептуально в виде АМ3+ мы имеем классическую платформу нулевых годов - трехчиповую и относительно низкой степени интеграции. Стоит также заметить, что последние микроархитектурные обновления выпускаемых для нее процессоров относятся к концу 2012 года , т. е. и с этой точки зрения даже последняя модификация АМ3+ - это уже история (в той же степени, что и LGA1155, например). Однако в рамках других платформ компания AMD отгружает не более чем двухмодульные процессоры (поддерживающие, соответственно, лишь четыре потока вычислений) с существенным креном в сторону интегрированной графики, так что самыми производительными процессорами AMD до сих пор являются именно устройства для АМ3+. Они давно не обновлялись, но окончательное их устаревание запланировано только на вторую половину этого года - в связи с переходом на единый (наконец-то!) сокет АМ4, для которого будут выпускаться и высокопроизводительные процессоры без интегрированной графики, и относительно бюджетные с таковой. Несложно заметить, что это пока еще не аналог LGA1155 и последующих платформ Intel - скорее, повторение LGA1156, поскольку при выборе быстрого процессора «в нагрузку» придется использовать и дискретную видеокарту. Но это все же намного лучше того, что происходило с ассортиментом компании последние пять лет, когда разнообразные FMx и все та же давно устаревшая АМ3+ были попросту несовместимы друг с другом.

Как компании удавалось поддерживать АМ3+ «на плаву», не обновляя процессоры? Да очень просто: за счет цены. О конкуренции за любителей высокой производительности все равно пришлось давно забыть, зато за примерно одни и те же деньги покупатель может приобрести либо восьмипоточный FX-8350/8370, либо четырехпоточный Core i5-6400. Да, разумеется, сравнение цен в данном случае не совсем корректно, поскольку не учитывает прочие особенности платформ и, в первую очередь, возможность сэкономить на видеокарте в случае платформы Intel. Однако если видеоускоритель все равно нужно приобретать (например, когда интересуют игры - мы придерживались и продолжаем придерживаться мнения, что полноценный игровой компьютер без дискретной видеокарты все еще невозможен), эта проблема отпадает. И на первый взгляд становится неважно, что тот же FX-8350 появился еще в 2012 году: реклама в его случае вообще говорит о восьми ядрах (забывая уточнить, что это несколько не те ядра, что в других архитектурах процессоров даже самой AMD), т. е. создает впечатление процессора, который в исполнении Intel стоит штукубаксов . Правильный это подход, неправильный - но работает же. А как - полезно проверить. В конце концов, как уже было сказано выше, в этом году нам наконец-то удастся познакомиться с новыми процессорами AMD - так что их в любом случае придется сравнивать со старыми. Вот сегодня и создадим «информационный задел» по старым и даже очень старым процессорам, благо представилась такая возможность.

Конфигурация тестовых стендов

Процессор AMD Phenom II X6 1075T AMD FX-8370
Название ядра Thuban Vishera
Технология пр-ва 45 нм 32 нм
Частота ядра std/max, ГГц 3,0/3,5 4,0/4,3
Кол-во ядер/потоков 6/6 4/8
Кэш L1 (сумм.), I/D, КБ 384/384 256/128
Кэш L2, КБ 6×512 4×2048
Кэш L3, МиБ 6 8
Оперативная память 2×DDR3-1333 2×DDR3-1866
TDP, Вт 125 125
Графика - -
Кол-во EU - -
Частота std/max, МГц - -
Цена - T-11149970

Главных героев будет два. FX-8370 процессор относительно новый - появился в конце 2014 года, но от FX-8350 (первенце семейства Vishera) отличается лишь тактовой частотой турбо-режима. Заметим, что формально топовыми представителями семейства являются FX-9370 и FX-9590, но и существуют последние лишь формально: TDP в 220 Вт мало того, что сам по себе многих отпугивает, так еще и приводит к проблемам совместимости со многими системными платами, а также вдумчивого подхода к выбору системы охлаждения. Ну а если это все не пугает, то не стоит забывать о том, что любые процессоры семейства FX имеют полностью разблокированные множители, позволяя сколь угодно тонкий тюнинг - в том числе, и по частоте. Это, кстати, еще одна причина того, что платформа до сих пор имеет определенную популярность у тех пользователей, кому неважен результат - главное, сам процесс. Который в данном случае еще и облегчается огромным кристаллом производимого по техпроцессу 32 нм процессора - обеспечить таковому теплоотвод очень просто (иногда недостатки могут становиться и достоинствами). Причем комплектация «боксовых» процессоров обновленными кулерами позволяет рассчитывать на неплохие результаты даже в таком варианте, который может оказаться еще и более дешевым, чем «традиционный» подход с ОЕМ-процессором и каким-нибудь «суперкулером». В общем, для ограниченного в средствах энтузазиста платформа интересна, несмотря на свою архаичность.

Но раз уж тестирование данной платформы все равно представляет собой экскурс в историю, мы решили по новой методике (включающей и изучение вопросов энергопотребления) протестировать и еще более старый процессор, относящийся к семейству Phenom II X6. До выхода первых FX в 2011 году - топовому в ассортименте компании. Более того - это навсегда лучшее решение для старых плат с «обычным» АМ3 и даже АМ2+. Причем, как показывали наши тесты, для процессоров семейства Phenom II использование DDR3 не так уж и необходимо, так что не удивимся, если где-то такие системы продолжают использоваться (в конце-концов даже по Конференции регулярно пробегают владельцы Pentium D - до сих пор:)). Лучше всего нам подошел бы топовый 1100Т, но такового не нашлось, а имеющийся 1075Т, увы, не Black Edition, так что корректным образом в старшую модель не превращается. Впрочем, даже при наличии возможности разгона множителем, неизвестно еще - насколько это корректно с точки зрения измерения энергопотребления, да и линейка сама по себе настолько старая (2010 год!), что, как нам кажется, большой разницы уже нет - тестировать 1100Т или 1075Т. Поэтому будет второй - раз уж он есть.

Процессор AMD Athlon X4 880K Intel Core i5-6400 Intel Core i7-880 Intel Core i7-3770
Название ядра Godavari Skylake Lynnfield Ivy Bridge
Технология пр-ва 28 нм 14 нм 45 нм 22 нм
Частота ядра std/max, ГГц 4,0/4,2 2,7/3,3 3,06/3,73 3,4/3,9
Кол-во ядер/потоков 2/4 4/4 4/8 4/8
Кэш L1 (сумм.), I/D, КБ 192/64 128/128 128/128 128/128
Кэш L2, КБ 2×2048 4×256 4×256 4×256
Кэш L3, МиБ - 6 8 8
Оперативная память 2×DDR3-2133 2×DDR3-1600 /
2×DDR4-2133
2×DDR3-1333 2×DDR3-1600
TDP, Вт 95 65 95 77
Графика - HDG 530 - HDG 4000
Кол-во EU - 24 - 16
Частота std/max, МГц - 350/950 - 650/1150
Цена T-13582517 T-12873939 - T-7959318

С кем будем сравнивать? Мы недаром выше упоминали Core i5-6400 - младший четырехъядерник современной линейки Intel непосредственно конкурирует по ценам со старшими моделями AMD (учитывая, конечно, замечание насчет видеокарты). По мнению некоторых читателей, и с решениями для LGA1156 в прошлый раз надо было сравнивать именно его, а не имеющий близкую цену и производительность, но все же двухъядерный Core i3-6320. Поэтому мы сегодня к списку испытуемых добавим и лучший процессор для упомянутой платформы, а именно Core i7-880, благо первые FX создавались в том числе и для конкуренции с таковыми. К сожалению, правда, вышли позднее, чем это было нужно для обеспечения таковой - уже во времена процессоров для LGA1155. Одна из таких моделей (пусть уже третьего, а не второго поколения Core) нами на данный момент протестирована - добавим и ее к списку испытуемых для полноты картины. И, заодно, самый быстрый Athlon X4 для FM2+ - для массовости. Тем более, что для поклонников продукции AMD это тоже в какой-то степени прямые конкуренты: FX-8370 безусловно «круче», но он ведь и дороже. Да еще и плюс архаичная платформа. А еще среди тестируемых, напомним, есть и Phenom II X6 1075T, так что любопытно будет посмотреть - как шесть, но старых ядер соотносятся с современными, но двумя модулями. Понятно, что четыре - интереснее, но простым и недорогим переход с Phenom II (не обязательно шестиядерным) будет только при наличии платы с АМ3+. Если же есть только АМ2+, так все равно менять все. Но если на такой плате, к примеру, установлен какой-нибудь Athlon II, производительности которого уже маловато, вопрос - найти на вторичном рынке Phenom II или менять платформу, вовсе не праздный.

Что касается прочих условий тестирования, все испытуемые работали в системе с дискретной видеокартой на базе Radeon R9 380 и 16 ГБ оперативной памяти. Тип и частота последней были максимальными поддерживаемыми процессорами - для всех, за исключением Phenom II X6 1075T, который мы тестировали с DDR3-1600, что проблем не вызывает (впрочем, на производительности тоже почти не сказывается).

Методика тестирования

Методика подробно описана в отдельной статье . Здесь же вкратце напомним, что базируется она на следующих четырех китах:

  • Методика измерения энергопотребления при тестировании процессоров
  • Методика мониторинга мощности, температуры и загрузки процессора в процессе тестирования

А подробные результаты всех тестов доступны в виде полной таблицы с результатами (в формате Microsoft Excel 97-2003) . Непосредственно же в статьях мы используем уже обработанные данные. В особенности, это относится к тестам приложений, где все нормируется относительно референсной системы (как и в прошлом году, ноутбука на базе Core i5-3317U с 4 ГБ памяти и SSD, емкостью 128 ГБ) и группируется по сферам применения компьютера.

iXBT Application Benchmark 2016

Как видим, появись модульная архитектура году так в 2010, ее «жизнь» существенно-упростилась бы: и пара модулей уже не уступает Core i5 того времени, а четыре могут убедительно превосходить даже четырехъядерные Core i7. Но, к сожалению (или к счастью), в 2011 году при разработке процессоров для LGA1155 Intel удалось существенно улучшить все характеристики своих изделий, причем настолько резко, что с тех пор подобных «подвигов» уже пять лет не наблюдается. В итоге старшие FX пришлось позиционировать не в сегмент между i5 и i7, а на уровень первых. Так что их цена вполне соответствует производительности, но не более того. Причем хорошо заметно, что других вариантов у компании и не было - перенос Phenom на более тонкий процесс производства вряд ли сумел их существенно «подстегнуть»: для того, чтобы обойти шесть старых ядер, уже зачастую достаточно и двух модулей, а не трех-четырех.

Особенно тогда, когда программное обеспечение не всегда может полноценно задействовать большое количество потоков вычисления, но требовательно к их качеству - включая и поддержку современных наборов команд и прочее. В итоге даже старшие FX ныне отстают уже и от младших Core i5, однако могло быть и хуже - что нам Phenom продемонстрировал. Собственно, как не раз уже было сказано - обычно интенсивные улучшения архитектуры дают свой эффект вовсе не в тех поколениях процессоров, в которых внедряются. Но чем далее - тем более важны.

А вот здесь - ничего не важно: был бы один быстрый поток. В таких условиях (что не секрет) процессорам AMD туго приходится, однако несложно заметить, что шансы быть самыми быстрыми на рынке в 2010 году у них были.

А вот в данном случае - и гипотетического не было. Впрочем, судя по небольшой разнице между FX и Phenom (причем даже не старшим) видно, что над оптимизацией таких сценариев работы никто и вовсе не занимался: все равно производительность для тех времен неплохая.

Как мы уже не раз писали, относительно старый целочисленный код - лучшее, что может встретиться в жизни модульным процессорам AMD. И хорошо заметно, что в общем-то для таких применений они во многом и разрабатывались: все-таки и шестиядерные Phenom II в 2010 уже не могли в таких задачах конкурировать с четырехъядерными Core i7, а вот для четырехмодульных FX это было посильной задачей. К сожалению, в конце 2011 года (когда первые процессоры этого семейства наконец-то появились физически) значительно усложнившейся.

Собственно, ария из той же оперы - как мы уже отмечали, упаковка данных по логике работы сходна с распознаванием текста. И по результатам тоже.

Явный аутсайдер здесь - Core i7-880, но просто потому, что LGA1156 поддерживала только SATA300. Как мы уже отмечали, чтоб разница стала вообще заметной, надо использовать быстрый SSD, с чем в те годы были сложности. Сейчас вот уже нет, так что это немного, но сказывается. А вот свои чипсеты AMD наделила поддержкой нового интерфейса уже тогда, так что в данном случае вообще обошлось без каких-либо шероховатостей.

Как мы уже не раз упоминали, разнообразные SMT-технологии программе «чужды», а вот количество «аппаратных» ядер и их качество - актуальны, что, например, выливается в то, что современный младший Core i5 быстрее старых Core i7. И даже не таких уж принципиально старых - позади остался не только 880, но и 3770. Первый отстал также и от FX-8370, что дело привычное. А вот шесть совсем старых архитектурно ядер в Phenom II… Два модуля современных процессоров AMD они обогнать могут, но с большим трудом - с тремя уже не справятся.

Что имеем в общем итоге? FX-8370 примерно в полтора раза быстрее, чем Athlon X4 880K - нормальная прибавка за счет удвоения ядер и добавление кэш-памяти третьего уровня. Но, к сожалению, этого уже маловато для конкуренции с современными процессорами Intel, что равные цены и то не полностью компенсируют. Хотя бы потому, что покупатель Core i5-6400 может обойтись без дискретной видеокарты, а выбравший FX - не может. Но если он ее все равно планирует приобрести, получается нечто близкое к паритету - до сих пор. Правда цены не его причина, а скорее следствие - недаром все годы они снижались.

Почему ситуация оказалась именно такой - в принципе, по результатам тоже можно предположить. Мы в точности не знаем - на какие годы пришлась основная часть разработки модульной архитектуры, но можно предполагать, что это было ранее 2011 года - ведь именно тогда (причем после нескольких задержек) первые процессоры для АМ3+ уже начали продаваться. Произойди это годом ранее, когда такие четырехъядерные процессоры, как Core i7-870/880 стоили в районе трех-пяти сотен долларов, эффект был бы заметным - сравнимым с выпуском первых Athlon. При этом для замены четырехъядерных Phenom или Core 2 Quad подошли бы двухмодульные процессоры (в т. ч. и модели с интегрированным GPU), а трехмодульные нормально бы смотрелись на фоне Phenom II X6 (или вместо таковых) и Core i5. Но в итоге процессорам пришлось конкурировать не с моделями для LGA1366 или LGA1156, а с новенькой (на тот момент) LGA1155, которая все еще неплоха и на фоне более новых платформ Intel. Которые, впрочем, стали еще лучше, а старые FX так и живут на рынке без серьезных изменений с 2012 года. Что и приходится компенсировать ценами, которые сначала были между Core i5 и i7, потом на уровне старших i5, потом средних, теперь вот младших. Поскольку и потребительские характеристики процессоров таким ценам примерно и соответствуют. Только вот Core i5 - очень дешевые для производства процессоры, а FX - дорогие. Так что этот порочный круг пора бы и разорвать - чем дальше, тем это сложнее. Будем надеяться, что в этом году все получится.

Энергопотребление и энергоэффективность

Впрочем, что касается энергопотребления, то и в те годы с ним было не все гладко, а с точки зрения современности 200 Вт весьма пугающи. Понятно, что это включая и то, что «проходило» через плату для питания видеокарты - но ведь она для всех одинаковая. А вот «прожорливость» трехчиповой платформы - в чистом виде ее особенность и «привет из нулевых»: современные намного экономичнее. Впрочем, если обратить внимание на собственно потребности процессора, то там тоже до 140 Вт дело доходило, т. е. для AMD превышение уровня TDP как раз обычное дело (хотя некоторые по-старинке до сих пор пытаются ругать за это Intel). А вот Phenom II X6 на первый взгляд выглядит лучше. Но не стоит забывать, что это совсем не старшая модель линейки, во-первых, и что энергопотребление имеет смысл лишь в связке с производительностью, во-вторых.

А с этой точки зрения модульная архитектура была явным шагом вперед. Отметим также, что FX ведут себя лучше, чем Athlon - хотя бы потому, что общая кэш-память третьего уровня (которой в процессорах для FM2/FM2+ нет) положительно сказывается на производительности, но не слишком прожорлива. Правда и места занимает много, почему ее реализация в процессорах с интегрированными GPU оказалась невозможной. Но в общем и целом становится понятным, почему компания не стала делать шринк FX на техпроцесс 28 нм: в APU он позволил увеличить мощность графики, но процессорным ядрам не дал бы ничего или почти ничего. И тревожный звоночек «бил в набат» еще пять лет назад: достичь уровня производительности 45-нанометровых процессоров Intel удалось, но ценой излишнего энергопотребления (кто сказал «NetBurst»?) . А дальше ситуация только усугублялась.

iXBT Game Benchmark 2016

А могут ли эти процессоры хорошо поработать в игровом компьютере? Вообще говоря, да - ведь основная нагрузка ложится на видеокарту. Но сколько возможностей последней «пропадет» из-за процессора? Особенно непраздным этот вопрос, кстати, является для пользователей плат с AM2+ или «обычным» AM3, где Phenom II X4/X6 - лучшее из доступного без смены платформы, а некогда популярные Athlon II с т. з. современности уже совсем ничего «не тянут».

Случай, когда критична «однопоточная производительность», что ставит все процессоры AMD в неудобное положение. Производительность даже (уже) недорогого R9 380 «сдерживают» все испытуемые. Но и играть с комфортом можно на всех же.

А здесь все справляются близко к максимуму возможного. И, кстати, обратите внимание - старые Phenom II заметно лучше новых Athlon.

Здесь хуже, однако, опять же, уже Phenom II ничуть не хуже любых Core 2 Quad или там Core i5/i7. А FX уже способны «пободаться» и с более новыми i5/i7.

Но в более новой игре серии Phenom II держится на равных (уже на равных) лишь с Athlon. Чего, впрочем, для практического использования вполне достаточно - но могло бы быть лучше. Хотя бы на уровне FX, который в FHD уже позволяет выбранной видеокарте «выложиться» на полную.

А здесь все примерно одинаковы - различия есть только в режиме со сниженным разрешением. И, что забавно, они скорее в пользу АМ3+, чем наоборот.

Когда все определяется видеокартой, хороши и процессоры пяти-шестилетней давности. Наиболее мощные из них, конечно. Но и стоить они чуть позже начали очень дешево.

FX ведет себя неплохо, время Phenom II, увы, истекло. С другой стороны, если такой процессор уже есть, то менять в игровом компьютере его вовсе не обязательно - заметного эффекта не будет. Лучше уж видеокарту еще мощнее поставить.

Вот Thief явно «голосует» за мощные платформы - и считает таковыми лишь современный ассортимент Intel. C одной стороны. С другой - нельзя сказать, что что-то совсем уж не работает. Порядка 40 кадров есть - при желании сэкономить на смене платформы, это можно считать достаточным.

Вот в этой паре зависимость частоты кадров от производительности процессоров уже есть. Но, собственно, и что? Абсолютные результаты всех испытуемых более чем достаточны для комфортной игры. Так что в конечном итоге приходим к тому, что для недорогого игрового компьютера «старый дуб еще пошумит». Естественно, если он уже есть (или может быть приобретен очень дешево). И, естественно, учитывая тот факт, что даже для бюджетных современных видеокарт такой процессор может оказаться «ограничительным фактором». Не в том плане, что поиграть не удастся, а в том, что производительность, все же, будет более низкой, чем потенциально возможная. Но и это до сих пор происходить будет не всегда.

Итого

В принципе, ничего необычного в итоге мы не получили - платформа формально «живая» и актуальная, но на самом деле давно не обновляемая. Нужны же обновления или нет - вопрос дискуссионный. Некоторым, например, не нравится, что Intel постоянно что-то модернизирует, почти не меняя производительность процессоров. С другой стороны, за одни и те же деньги производительность постоянно (пусть и медленно) растет, а необходимость в смене платформ обусловлена в первую очередь их функциональностью. В итоге какая-нибудь топовая системная плата пятилетней давности, например, выглядит уныло и бледно на фоне даже самых бюджетных современных предложений, ценой раз в пять ниже. Если же ничего не трогать, то и производительность расти не будет, и в остальном характеристики компьютера так и будут оставаться типичными для пяти-семилетней давности. Другой вопрос, что во многих случаях этого вполне достаточно, и в случае разумной ценовой политики «исторические» платформы оказываются вполне пригодны для практического применения, пока физически не исчезнут из эксплуатации, что случится, очевидно, еще позже окончания продаж.

В начале года, 8 января, компания AMD представила новую платформу AMD Dragon, основанную на процессоре нового семейства AMD Phenom II. Первоначально компания AMD продемонстрировала лишь два процессора данного семейства: AMD Phenom II X4 940 и AMD Phenom II X4 920, которые совместимы с разъемом AM2+ и поддерживают память DDR2. Позднее были представлены процессоры семейства AMD Phenom II, совместимые с разъемом AM3 и поддерживающие как DDR2-, так и DDR3-память. В этой статье мы рассмотрим результаты тестирования новых процессоров AMD семейства Phenom II.

Модельный ряд процессоров семейства AMD Phenom II

Главное отличие новых процессоров семейства AMD Phenom II от процессоров семейства AMD Phenom заключается в том, что они выполнены по 45-нм техпроцессу с применением технологии SOI, в то время как процессоры семейства AMD Phenom выполняются по 65-нм техпроцессу.

Точно так же, как и процессоры семейства AMD Phenom, они представляют собой истинно многоядерные процессоры, то есть все ядра процессора выполнены на одном кристалле.

Среди нововведений, реализованных в новых процессорах AMD Phenom II, можно также отметить усовершенствованную технологию AMD Cool’&’Quiet 3.0. Она объединяет в себе ряд функций, позволяющих снизить энергопотребление процессора в те моменты, когда он недозагружен, а также предотвратить перегрев процессора.

При анонсе нового процессора семейства AMD Phenom II X4 компания AMD указывала и на другие преимущества в сравнении с предыдущим семейством. В частности, отмечалось, что новые процессоры выполняют больше инструкций за такт (Instruction Per Clock, IPC).

Семейство процессоров AMD Phenom II в настоящее время включает три серии: AMD Phenom II X4 900, AMD Phenom II X4 800 и AMD Phenom II X3 700.

Процессоры серии AMD Phenom II X4 900

Сейчас в 900-ю серию процессоров входят две четырехъядерные модели: AMD Phenom II X4 940 и AMD Phenom II X4 920. Каждое ядро процессора AMD Phenom II X4 900-й серии имеет выделенный L2-кэш размером 512 Кбайт и разделяемый между всеми ядрами L3-кэш размером 6 Мбайт.

Процессор AMD Phenom II X4 940 имеет тактовую частоту 3,0 ГГц, а процессор AMD Phenom II X4 920 - 2,8 ГГц. Эти процессоры оснащены интегрированным двухканальным контроллером памяти DDR2 и поддерживают память DDR2-667/800/1066.

Процессоры AMD Phenom II X4 940 и AMD Phenom II X4 920 совместимы с разъемами Socket AM2+/AM2 и поддерживают шину HyperTransport 3.0 на скорости до 3600 МГц (двусторонняя) с пропускной способностью до 16 Гбайт/с. Оба процессора имеют TDP 125 Вт.

Разница между моделями процессоров AMD Phenom II X4 940 и AMD Phenom II X4 920 заключается не только в тактовой частоте, но еще и в том, что процессор AMD Phenom II X4 940 имеет разблокированный множитель, что позволяет реализовывать его эффективный разгон. Вообще, если говорить о разгонном потенциале процессора AMD Phenom II X4 940, то, по сообщениям независимых источников в Интернете, он достаточно большой. Так, есть данные, что применение жидкого азота для охлаждения процессора позволило достичь рекордной тактовой частоты в 6 ГГц, а посредством обычного воздушного охлаждения этот процессор легко разгоняется до 4 ГГц.

Добавим также, что в скором времени ожидается появление процессора AMD Phenom II X4 910, который будет иметь тактовую частоту 2,6 ГГц.

Процессоры серии AMD Phenom II X4 800

На данный момент 800-я серия процессоров включает всего одну модель четырехъядерного процессора - AMD Phenom II X4 810. Однако в скором времени ожидается появление еще одной модели - AMD Phenom II X4 805.

Отличие процессоров 800-й серии от процессоров 900-й серии заключается в урезанном размере кэша L3 и в том, что в процессорах 800-й серии реализован контроллер памяти, поддерживающий память как DDR2, так и DDR3. Кроме того, процессоры 800-й серии совместимы как с разъемами Socket AM2+/AM2, так и с разъемом Socket AM3.

Каждое ядро процессора AMD Phenom II X4 810 имеет выделенный L2-кэш размером 512 Кбайт и разделяемый между всеми ядрами L3-кэш размером 4 Мбайт. Процессор AMD Phenom II X4 810 работает с тактовой частотой 2,6 ГГц. Он оснащен интегрированным двухканальным контроллером памяти DDR2 (поддерживается память DDR2-667/800/1066) и контроллером памяти DDR3 (поддерживается память DDR3-800/1066/1333). TDP процессора составляет 95 Вт.

Процессоры серии AMD Phenom II X3 700

В настоящее время в 700-ю серию процессоров входят две модели: AMD Phenom II X3 720 и AMD Phenom II X3 710. Все процессоры 700-й серии являются трехъядерными. Каждое ядро процессора AMD Phenom II X4 720 и AMD Phenom II X3 710 имеет выделенный L2-кэш размером 512 Кбайт, а разделяемый между всеми ядрами L3-кэш имеет размер 6 Мбайт.

Как и процессоры 800-й серии, процессоры 700-й серии имеют интегрированный двухканальный контроллер памяти DDR2 (поддерживается память DDR2-667/800/1066) и контроллер памяти DDR3 (поддерживается память DDR3-800/1066/1333).

Процессор AMD Phenom II X3 720 работает на тактовой частоте 2,8 ГГц, а процессор AMD Phenom II X3 710 - на тактовой частоте 2,6 ГГц. Еще одно различие между AMD Phenom II X3 720 и AMD Phenom II X3 710 заключается в том, что в модели AMD Phenom II X3 720 разблокирован множитель, а следовательно, его можно легко разгонять.

Методика тестирования

Тестирование процессоров проводилось в два этапа. На первом этапе определялась производительность процессоров в различных приложениях, а на втором - в разных играх.

В ходе тестирования каждый тест запускался пять раз с перезагрузкой компьютера после каждого прогона теста и выдерживанием двухминутной паузы после перезагрузки. По результатам пяти прогонов теста рассчитывались средний арифметический результат и среднеквадратичное отклонение.

Весь процесс тестирования был полностью автоматизирован, для чего применялся специальный скрипт, который последовательно запускал все необходимые тесты, выполнял перезагрузку, выдерживал необходимые паузы и т.д. В этом тестовом скрипте для определения производительности в различных приложениях использовались следующие бенчмарки и приложения:

  • DivX Converter 6.6.1;
  • DivX Codec 6.8.5;
  • DivX Player 6.8.2;
  • Windows Media Encoder 9.0;
  • MainConcept Reference v.1.1;
  • VLC media player 0.8.6;
  • Lame 4.0 Beta;
  • WinRAR 3.8;
  • WinZip 11.2;
  • Adobe Photoshop CS4;
  • Microsoft Excel 2007.

Приложение DivX Converter 6.6.1 с кодеком DivX Codec 6.8.5 применялось для определения производительности при конвертировании исходного видеофайла в видеофайл формата DivX (предустановка Ноme Theater в приложении DivX Converter 6.6.1).

Приложение Windows Media Encoder 9.0 (WME 9.0) использовалось для определения производительности при конвертировании видеофайла, записанного в формате WMV, в видеофайл с меньшими разрешением и видеобитрейтом.

Приложение MainConcept Reference v.1.1 (кодек H.264) применялось для определения производительности при конвертировании исходного видеофайла, записанного в формате WMV, в видеофайл с иным разрешением и видеобитрейтом (предустановка Н.264 HDTV 720p).

Приложение Lame 4.0 Beta использовалось для определения производительности при конвертировании аудиофайла из WAV- в MP3-формат.

Приложение DivX Player 6.8.2 применялось в паре с приложением WME 9.0 для создания многозадачного теста. Смысл этого теста заключался в том, чтобы на фоне проигрывания видеофайла с применением приложения DivX Player 6.8.2 запускался процесс конвертирования этого же видеофайла с помощью приложения WME 9.0.

Еще один многозадачный тест заключался в том, чтобы одновременно проигрывать два видеофайла с помощью плеера VLC media player 0.8.6 и одновременно с этим производить конвертирование еще одного видеофайла с использованием приложения WME 9.0 и конвертирование аудиофайла из формата WAV в формат MP3 посредством приложения Lame 4.0 Beta.

Приложения WinRAR 3.8 и WinZip 11.2 применялись для определения производительности при архивировании и разархивировании большого количества цифровых фотографий в формате TIF. При сжатии данных с помощью программы WinRAR 3.8 использовалась максимальная степень компрессии и шифрование по алгоритму AES-128. При архивировании с применением программы WinZip 11.2 применялись максимальная степень компрессии и шифрование по алгоритму AES-256.

Приложение Adobe Photoshop CS4 использовалось нами для определения производительности системы при обработке цифровых фотографий. Наш тест с приложением Adobe Photoshop CS4 разбит на три подтеста. В первом из них мы последовательно применяли различные ресурсоемкие фильтры к одной и той же фотографии, имитируя при этом процесс ее художественной обработки.

В следующем подтесте с приложением Adobe Photoshop CS4 имитировалась пакетная обработка большого количества фотографий. Всего в тесте проводилась пакетная обработка 23 фотографий в формате TIF.

В третьем подтесте с приложением Adobe Photoshop CS4 имитировалась пакетная обработка RAW-фотографий.

Приложение Microsoft Excel 2007 применялось для определения производительности системы при выполнении вычислений в электронных таблицах Excel. Мы использовали две задачи в приложении Excel. Первая заключалась в пересчете электронной таблицы, а вторая состояла в имитации метода Монте-Карло для вероятностной оценки экономического риска.

Отметим, что результаты всех перечисленных тестов зависят от производительности процессора, памяти и жесткого диска. Однако они практически никак не зависят от производительности видеокарты.

Во всех перечисленных тестах результатом является время выполнения тестового задания, и чем оно меньше, тем лучше.

Для оценки производительности процессоров в играх использовались следующие игры и бенчмарки:

  • Quake 4 (Patch 1.42);
  • S.T.A.L.K.E.R.: Shadow of Chernobyl (Patch 1.005);
  • S.T.A.L.K.E.R.: Clear Sky (Patch 1.007);
  • Half-Life 2: Episode 2;
  • Crysis v.1.2.1;
  • Left4Dead;
  • Call of Juares Demo Benchmark v. 1.1.1.0;
  • 3DMark06 v. 1.1.0;
  • 3DMark Vantage v. 1.0.1.

В тестах Quake 4, S.T.A.L.K.E.R.: Shadow of Chernobyl, S.T.A.L.K.E.R.: Clear Sky, Half-Life 2: Episode 2, Crysis, Left4Dead и Call of Juares Demo Benchmark результатом являлось количество отображаемых кадров в секунду (frames per second, fps), а в бенчмарках 3DMark06 и 3DMark Vantage результат представлялся в безразмерных единицах (3DMark Score).

В ходе тестирования каждый игровой тест (за исключением 3DMark Vantage v. 1.0.1) запускался при разрешении экрана 1280x800, 1440x900, 1680x1050 и 1920x1200 точек. При каждом разрешении экрана игровые тесты запускались по пять раз с перезагрузкой компьютера после каждого прогона и выдерживанием двухминутной паузы после перезагрузки. Бенчмарк 3DMark Vantage v. 1.0.1 запускался по пять раз в каждом из четырех пресетов (Entry, Performance, High и Extreme).

По результатам пяти прогонов рассчитывались средний арифметический результат и среднеквадратичное отклонение. Весь процесс тестирования был полностью автоматизирован, для чего использовался специальный скрипт, который последовательно запускал все необходимые тесты, выполнял перезагрузку компьютера, выдерживал необходимые паузы и т.д.

Игра Crysis тестировалась с двумя демо-сценами, одна из которых служила для тестирования графического процессора, а другая - для тестирования центрального процессора в совокупности с графическим, поскольку при проигрывании затрагивает физическую составляющую движка игры (обе демо-сцены входят в комплект игры).

Все игры запускались в двух режимах настройки: максимальная производительность и максимальное качество. Режим настройки на максимальную производительность достигался за счет отключения таких эффектов, как анизотропная фильтрация текстур и экранное сглаживание, а также установки низкой детализации изображения и т.д. То есть данный режим был направлен на то, чтобы получить максимально возможный результат (максимальное значение FPS). В данном режиме настройки результат в большей степени зависит от производительности процессора и в меньшей степени от производительности видеокарты.

Режим настройки на максимальное качество достигался за счет использования высокой детализации, различных эффектов, анизотропной фильтрации текстур и экранного сглаживания. В данном режиме настройки результат в большей степени зависит от производительности видеокарты и в меньшей степени от производительности процессора.

При тестировании компьютеров по описанной выше методике мы традиционно используем понятие интегральной оценки производительности и соответственно понятие референсного ПК. Дело в том, что сами по себе результаты тестирования еще не дают представления о производительности ПК. Действительно, зная, что время конвертирования видеофайла составляет 120 с, еще нельзя сделать вывод о производительности, поскольку непонятно - много это или мало. То есть результаты тестирования имеют смысл лишь при возможности их сопоставления с результатами некоторого рефернсного ПК. Для сравнения производительности тестируемого и референсного ПК осуществлялось нормирование результатов, для чего время выполнения каждого тестового задания референсным ПК делилось на время выполнения этого же задания тестируемым процессором.

Для расчета интегральной оценки производительности на наборе приложений нормированные результаты тестов разбивались на шесть групп: конвертирование видео, конвертирование аудио, многозадачные тесты, работа с архиваторами, работа с Photoshop, работа с Excel. Далее в каждой группе тестов рассчитывался промежуточный интегральный результат как среднее геометрическое от нормированных результатов. После этого рассчитывалось среднее геометрическое от промежуточных интегральных результатов по всем группам тестов. Для удобства представления результатов полученное значение умножалось на 1000. Это и является интегральной оценкой производительности компьютера на наборе приложений. Для референсного ПК интегральный результат производительности на наборе приложений равен 1000 баллов, а для тестируемого ПК может быть как больше, так и меньше 1000 баллов.

В игровых приложениях также рассчитывается интегральный результат производительности, однако подход в данном случае несколько иной. Первоначально для каждой игры в каждом режиме настройки по формуле рассчитывается средневзвешанный по всем разрешениям результат.

В данной формуле результаты для различных разрешений имеют разные весовые коэффициенты, причем максимальный весовой коэффициент имеет результат для разрешения 1440x900.

После этого рассчитывается среднее геометрическое между определенными по описанной выше формуле результатами для режима максимального качества и максимальной производительности. Найденный таким образом результат представляет собой интегральную оценку производительности ПК в отдельной игре.

Для получения интегральной оценки производительности в тесте 3DMark Vantage рассчитывается среднее геометрическое между результатами для всех пресетов по формуле .

Далее интегральные оценки производительности в каждой отдельной игре нормируются на аналогичные результаты для референсного ПК и рассчитывается среднее геометрическое по всем нормированным интегральным результатам. Для удобства представления результатов полученное значение умножается на 1000. Это и является интегральной оценкой производительности компьютера в играх. Для референсного ПК интегральный результат производительности в играх равен 1000 баллов.

В качестве референсной конфигурации мы использовали самый производительный (и самый дорогой) на начало 2009 года компьютер. Конфигурация референсного ПК была следующей:

  • процессор - Intel Core i7 Extreme 965 (тактовая частота 3,2 ГГц);
  • системная плата - ASUS RAMPAGE II EXTREME;
  • чипсет системной платы - Intel X58 Express;
  • память - DDR3-1066 (Qimonda IMSH1GU03A1F1C-10F PC3-8500);
  • объем памяти - 3 Гбайт (три модуля по 1024 Мбайт);
  • режим работы памяти – DDR3-1333, трехканальный режим;
  • тайминги памяти - 7-7-7-20;
  • видеокарта - две видеокарты GeForce GTX295 в режиме 4-Way SLI;
  • видеодрайвер - ForceWare 181.20;

Еще раз отметим, что наш референсный ПК является очень «навороченным» - это самый производительный и дорогой на данный момент компьютер. То есть интегральные результаты производительности всех остальных компьютеров должны быть ниже 1000 баллов.

Конфигурация тестового стенда

Мы протестировали три процессора семейства AMD Phenom II: AMD Phenom II X4 940, AMD Phenom II X4 810 и AMD Phenom II X4 720. Дабы обеспечить одинаковые для всех трех процессоров условия тестирования и с учетом того, что процессоры AMD Phenom II X4 810 и AMD Phenom II X4 720 поддерживают память как DDR2, так и DDR3, а процессор AMD Phenom II X4 940 - только память DDR2, для тестирования процессоров использовался стенд следующей конфигурации:

  • системная плата - ASUS M3A78-T;
  • чипсет системной платы - AMD790GX+SB750;
  • память - DDR2-1066 (A-Data);
  • объем памяти - 2 Гбайт (два модуля по 1024 Мбайт);
  • режим работы памяти - DDR2-1066, двухканальный режим;
  • тайминги памяти - 5-5-5-15;
  • видеокарта -Zotac GeForce GTX295;
  • видеодрайвер - ForceWare 182.05;
  • жесткий диск - Intel SSD X25-M (Intel SSDSA2MH080G1GN).

Результаты тестирования

Итак, после знакомства с методикой тестирования и алгоритмом расчета интегральных результатов производительности в приложениях и играх можно перейти к оглашению результатов тестирования.

В таблице приведено время выполнения тестовых задач в секундах для тестируемых процессоров и референсного ПК, а на рис. 1 представлены нормированные скорости выполнения тестовых задач. На рис. 2-20 представлены результаты тестирования процессоров в игровых приложениях.

Рис. 1. Нормированные скорости выполнения тестовых задач

Как видно по результатам тестирования, в неигровых приложениях производительность процессоров AMD Phenom II X4 ранжируется в следующем порядке: Phenom II X4 940, Phenom II X4 810, Phenom II X3 720. Причем производительность четырехъядерного процессора Phenom II X4 810 примерно на 19% выше производительности трехъядерного процессора Phenom II X3 720, а производительность процессора Phenom II X4 940 примерно на 15% выше производительности процессора Phenom II X4 810 и на 37% выше производительности процессора Phenom II X3 720.

Рис. 2. Результаты тестирования
в игре Quake 4 (Patch 1.42)
при настройках на минимальное качество

Рис. 3. Результаты тестирования
в игре Quake 4 (Patch 1.42)
при настройках на максимальное качество